

Air-cooled Chilling Units

R32 e-series Ecological and tough options with cutting-edge technology

Reduced impact on Earth with the use of R32 and a reduction in refrigerant volume

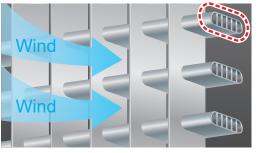
記録

The GWP of R32 is 33% of R410A, and the amount of refrigerant required is reduced by as much as approximately 68%.

Ecolod

High Efficiency

語識


The high efficiency of the e-series is achieved by high quality key components and cooperation among units

The inverter compressor and flat tube heat exchanger contribute to improved performance rating and seasonal efficiency. Furthermore, by linking multiple units, efficient operation in the system is also realized.

Key technology

Flat tube heat exchanger

The installation of fins inside the flat tube to divide the flow path of refrigerant improves heat exchange effectiveness. It contributes to greater energy efficiency, reduction in refrigerant volume, and a wider operating range.

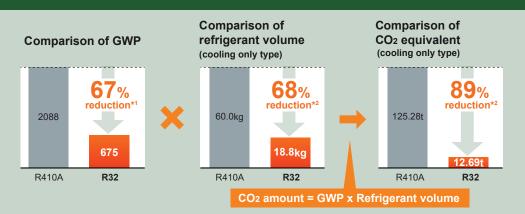
(Illustration)

1 128

R32-compatible inverter compressor

The compressor with a suction chamber injection mechanism and an inverter control system that automatically controls the operating frequency realize the use of R32 refrigerant and a wide water operating range.

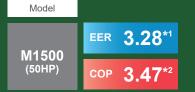
Operable in cooling mode at an intake air temperature of up to 52°C.


The maximum operable intake air temperature has increased from 43°C to 52°C. This extends the cooling performance of the units in intense heat.

Operable in heating mode at an intake air temperature of down to -20°C.

The standard minimum intake air temperature for heating operation has expanded from -15°C to -20°C. The latest model helps to create warm, comfortable spaces during the harsh winter.

Reduced impact on the environment by using R32 refrigerant


Compared to R410A, the refrigerant used in conventional models, R32 has a one-third lower GWP. The use of the R32-compatible compressor and flat tube heat exchanger allows for an approximately 68% reduction in refrigerant volume and approximately 89% reduction in CO₂ equivalent in cooling only models.

*1 Source: IPCC 4th Assessment Report, global warming potential (GWP) 100-year value. Comparison of 2088 (R410A) and 675 (R32) based on Regulation(EU) No517/2014

*2 Source: R410A EACV-P1500/1800YBL_R32 EACV-M1500/1800YCL

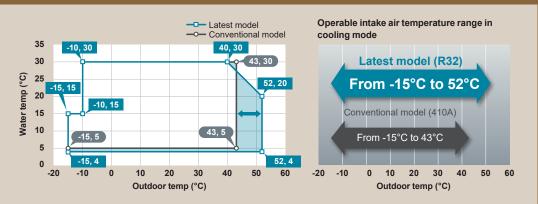
High efficiency

Rated efficiency

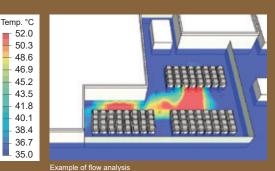
Improved major components achieve high energy saving performance.

- *1 Under normal cooling conditions at outdoor temp 35°DB/24°WB(95°FDB/75.2°FWB) outlet water temp 7°C(44.6°F) inlet water temp 12°C(53.6°F). Pump input is included in cooling capacity and power input based on EN14511.
 *2 Under normal heating conditions at outdoor temp 7°DB/6°WB(44.6°FDB/42.8°FWB) outlet water temp 45°C(113°F) inlet water temp 40°C(104°F). Pump input is included in brotine senseith early ensure input based on EN14511.
- heating capacity and power input based on EN14511

Seasonal efficiency


Seasonal efficiency is improved in both 50HP and 60HP units.

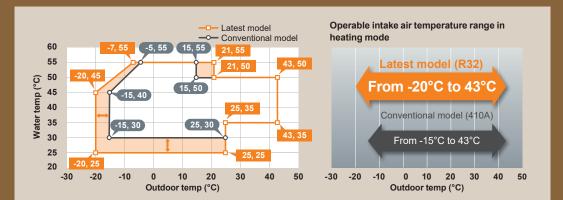
*1 The values are calculated in accordance with EN14511.



The use of the flat tube heat exchanger has made it possible to increase the maximum intake air temperature from 43°C to 52°C in cooling mode, extending the cooling performance of the units in intense heat and in collective installation.

In built-up areas with a high density of buildings, wind may be blocked, causing an accumulation of warm air in the vicinity of the unit. The latest model is guaranteed up to 52°C, so operation remains stable even in such situations.

*The figure shows an installation example. Actual conditions vary. Units must be adequately spaced to ensure optimum performance



Operable in heating mode at an intake air temperature of down to -20°C.

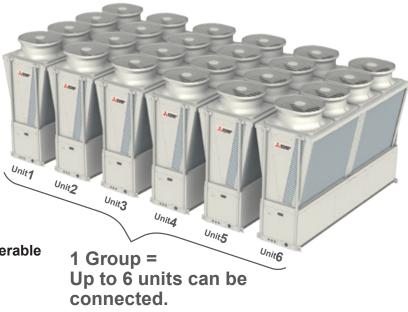
Heating

Cooling

The latest model has a greater heating capacity range due to the flat tube heat exchanger and the suction chamber injection mechanism of the compressor. It is operable at the minimum intake air temperature of -20°C and the minimum outlet water temperature of 25°C. The latest model is suitable for use in manufacturing lines requiring heating throughout the year.

*The function to protect the units is triggered when the units are operated at a temperature outside the operating temperature range listed above. When this happens, the units will either be operated in the capacity-save mode or come to a stop and will be unable to supply water at the target temperature. Also, the units may be operated in the capacity-save mode at the start of heating operation (while warming up) due to the protection function.

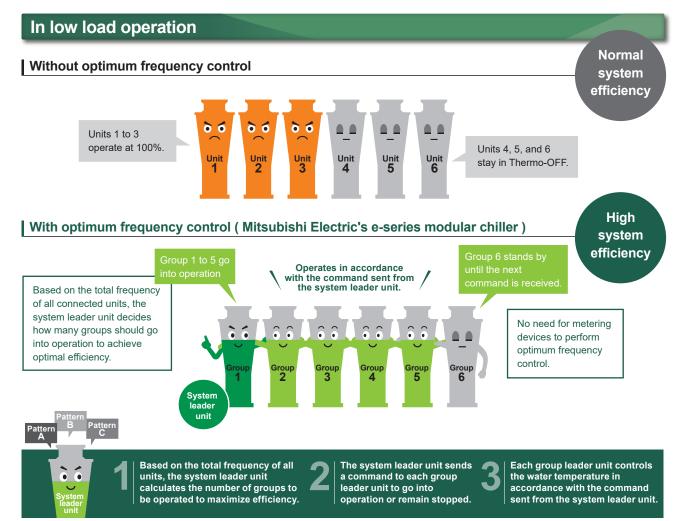
High functionality of modular chillers

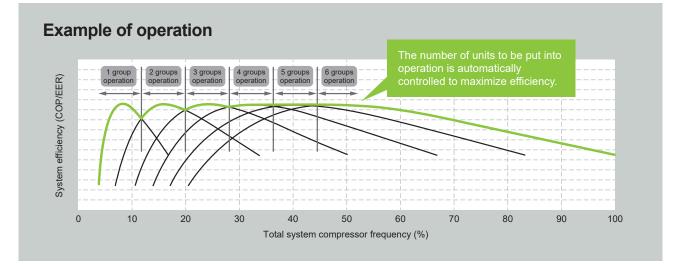

High functionality of modular chillers

Up to six units can be connected to each group.

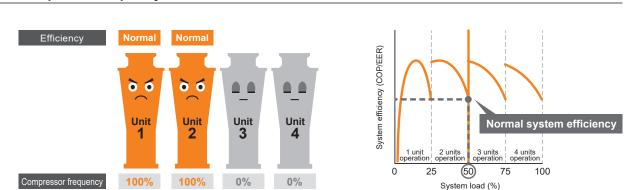
Optimum frequency control is performed based on the system load.

Operation is rotated to even out the operation time among groups.

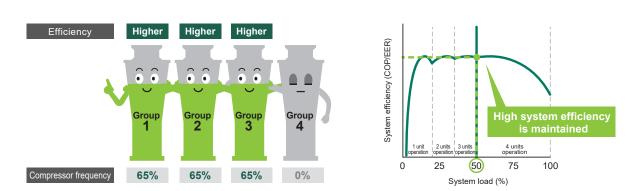

Units not undergoing maintenance are operable while other units are being maintained.


More energyefficient

Optimum frequency control for greater energy saving


A maximum of six units is connectable to each group to increase the capacity of the system. The optimum number of groups is put in operation by using a unique automatic frequency control function to achieve maximum efficiency based on the system load demand.

*Dip switch setting is required to use this function.



When the overall system load is 50%

Without optimum frequency control

Without optimum frequency control, it is only possible to turn the unit on or off, and compressor frequency cannot be adjusted according to the required capacity.

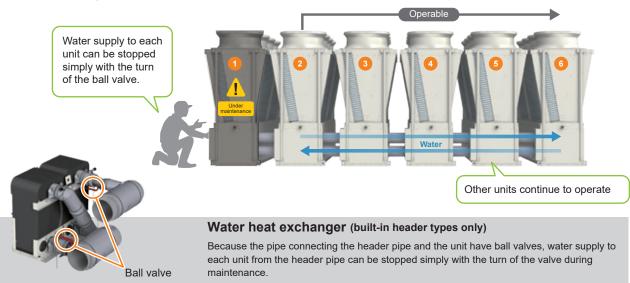
With optimum frequency control (Mitsubishi Electric's e-series modular chiller)

Each unit has inverter compressors, and the operating frequency and the number of groups to be operated are controlled to maximize the operational efficiency of each unit based on the total system compressor frequency for the entire group. This function improves system efficiency when operating at low to medium loads.

High functionality of modular chillers

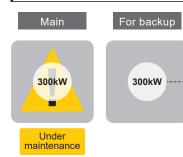
More reliable operation

Rotation operation and easy maintenance


Module chiller systems have an advantage of being able to operate the groups in rotation, so the operating time of each group is controlled to be equalized. They also have an additional advantage: only the ones being serviced need to be stopped while others are kept in operation during maintenance. The capacity of the backup units can also be suppressed.

Rotation operation

When multiple groups are installed, the operating time of each group in the same system is controlled to be equalized according to the load of the whole system.



Easy maintenance

When a non-modular chiller is used as the main 300kW unit, as in the below example, the same capacity would also be required as a backup. However, when e-series modular chillers are used, two units can still operate even if one unit is under maintenance. This reduces the backup capacity requirement.

Non-modular chiller

Operation can be continued via one norma unit and one backup unit.

With the module chiller system, even if one unit is under maintenance, the other units can continue to operate.

Less space and installation work

Units with built-in header pipings take less space and offer easier installation and maintenance.

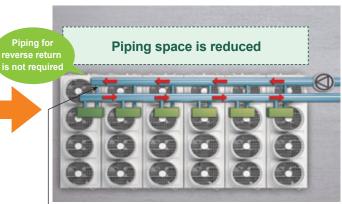
Internal structure


Built-in header type

Header pipings, which are normally required for connecting the unit to local water pipes, are built into the unit. Multiple units are easily connectable by using optional parts. This eliminates the need to procure water pipes for connecting the units, and reduces installation work.

*This photo shows the angle from the piping side.

Less space and equipment cost


Standard piping construction

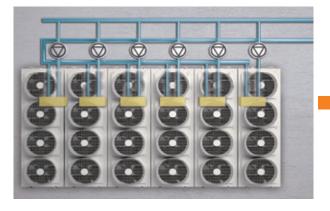
With standard piping construction, the customer must determine and design the return piping.

The supply pipe and return pipe of each unit should have the same overall length and piping resistance to keep a balance among the flow rates to the units. Therefore, piping space and equipment costs are required.

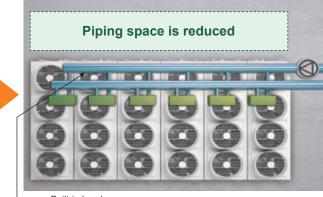
Built-in header type

Built-in header

The size of the piping for the built-in header type is large to reduce pressure loss in the piping. It is unnecessary to prepare the piping for reverse return.

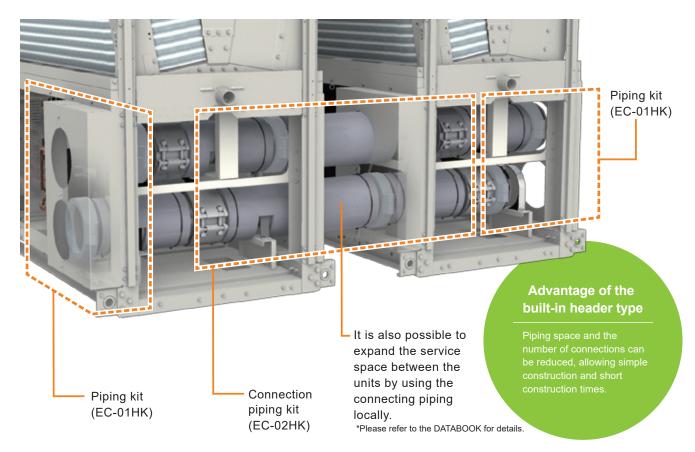

This helps to reduce piping space and equipment cost.

Less space and installation work


Reduced installation work

The piping to connect to other units is built into each unit. The number of piping connections is reduced by using optional parts (saving construction work and reducing construction time).

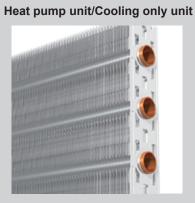
Standard piping construction


Built-in header type

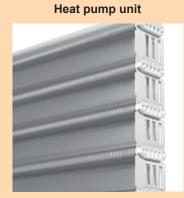
Built-in header

• Example construction of built-in header type modules

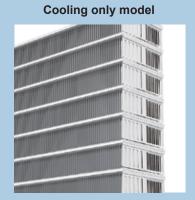
Use the optional connection kit to connect units for easy installation.



Flat tube heat exchanger


Flat tubes are sub-divided into smaller fins to increase the contact area with the refrigerant, resulting in greater heat-exchanging efficiency. The cooling only models and the heat pump models have fins that are shaped differently to increase the overall heat-exchange efficiency of each model, resulting in reduced refrigerant volume, greater operating range, and higher operation efficiency.

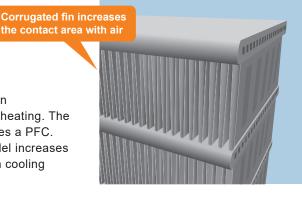
Conventional model (R410A)



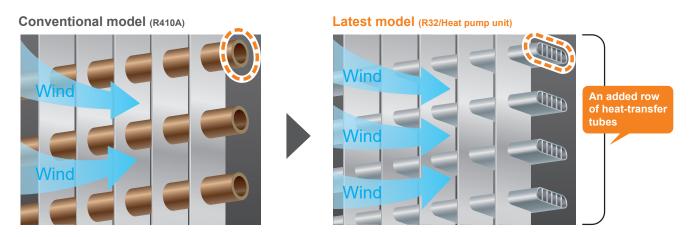
Round copper pipe

Latest model (R32)

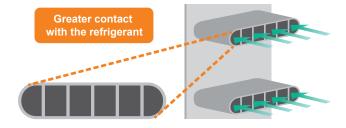
Aluminum Horizontal Flat Tube (HFT)



Aluminum Parallel Flow Condensor (PFC)



Cooling only


The heat pump and cooling only models adopt different fins in consideration of the influence of drain water clogging during heating. The heat pump model uses a HFT and the cooling only model uses a PFC. The shape of the corrugated fin used in the cooling only model increases the contact area with air and the amount of heat exchange in cooling operation.

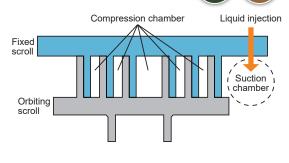
• Image of the flat tube

Cross section of the flat tube

The fins inside the flat tube divide the flow of refrigerant into multiple paths and improve heat-exchanger effectiveness. Flat tubes reduce wind resistance and increase the number of piping stages, resulting in an overall improvement in heat exchange efficiency.

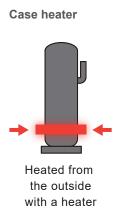
Compressor

R32-compatible high-efficiency inverter compressor

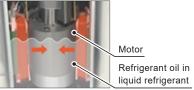


Each unit has four high-efficiency R32-compatible inverter compressors. Compared to R410A, R32 has low pressure loss, contributing to better operation efficiency. The inverter compressor automatically controls the compressor frequencies based on various air-conditioning conditions such as outside air temperature and changes in load, helping to achieve higher seasonal efficiency.

Stable operation with a suction chamber injection mechanism


Returning the liquid refrigerant to the suction chamber suppresses a rise in the discharge temperature of R32 while the units are operated at low outside temperatures. The amount of injected refrigerant is adjusted according to the refrigerant state, allowing the units to operate in heating mode at an intake temperature as low as -20°C.

IH (induction heating) warmer


The e-series adopts an IH (induction heating) warmer to prevent refrigerant stagnation while the unit is stopped. The IH warmer suppresses standby power more than the belt case heater, which is wrapped around the compressor shell surface to constantly heat the compressor.

IH warmer

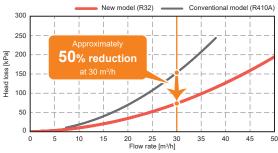
The magnetic property of the iron motor core inside the compressor is used to heat the compressor shell and prevent refrigerant stagnation while the unit is stopped. In addition, compressor heating remains on for 30 minutes after operation is stopped, and subsequently is switched on and off every 30 minutes. Standby power consumption therefore is lower than a case heater.

• Heated by energizing the motor * Low voltage at a level that will not start up the compressor

• Operation while the air conditioner is stopped

On/off is repeated every 30 minutes

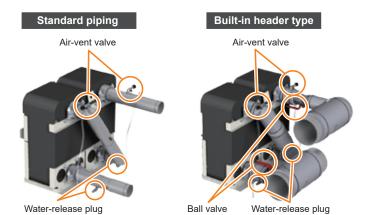
* Normally the compressor is heated while the unit is stopped to prevent liquid refrigerant from remaining in the compressor and to evaporate the liquid refrigerant in the compressor.


Water heat exchanger

Reduction in head loss

Head loss in the water pipe is reduced by the use of a different water heat exchanger and by reducing the number of water piping routes in the unit.

• Water heat exchanger head loss (standard piping type)


Conventional model

Latest model

*This graph shows the comparison of water heat exchanger head loss for the standard piping type. The built-in header type model is not included.

Water piping in the unit

- Air-vent valves prevent water splashing when bleeding air.
- Separate water-release plugs are installed at both the inlet and outlet of the water pipes, allowing for easy water drainage just by plugging in and out the plugs.

Easy control

The water temperature in each module can be controlled by using local remote controller PAR-W31MAA or by using centralized controller AE-C400. The control method can be selected at the request of each customer.

External signal input

Basic operations, such as operation command, mode switching and water temperature setting, can be performed by inputting external signals directly to the unit.

* Optional products, such as remote controllers, are not always required.

Remote controller PAR-W31MAA

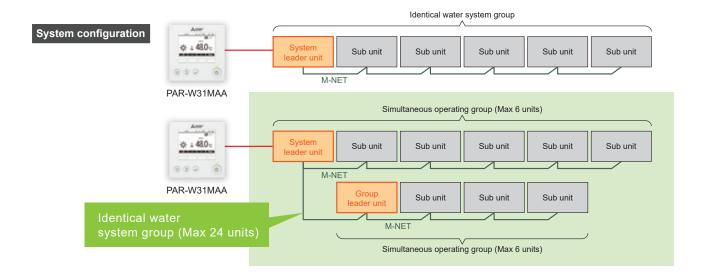
A199

Centralized controller AE-C400

Major functions

	ON/OFF
Input	Cooling/Heating/Cooling ECO/Heating ECO/
	Anti-freeze
	Snow/Normal
	Demand
	Target water temperature
	Operation command
Output	Operation mode
	Error
Control function	Control of multiple units
(function of chiller)	Control to prevent simultaneous defrosting

Remote controller

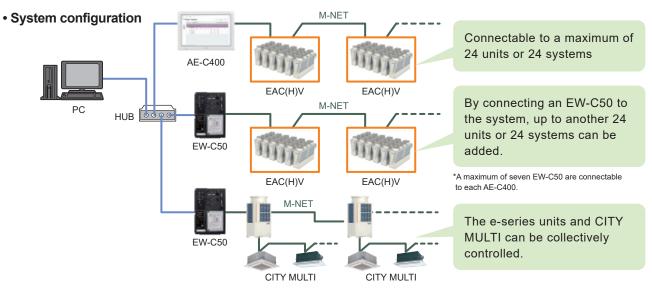

Basic operations, such as ON/OFF, mode switching, water temperature setting and schedule setting, can be performed by connecting a remote controller.

PAR-W31MAA

Major functions

	ON/OFF	
	Cooling/Heating/HeatingECO/Anti-freeze	
Operation/setting	Snow/Normal	
Operation/setting	Demand	
	Scheduled operation (daily/weekly)	
	Target temperature	
	Operation mode	
	Current water temperature	
Display	Target temperature	
	Error code	
Control function	Control of multiple units	
(function of chiller)	Control to prevent simultaneous defrosting	

Centralized controller


The e-series units are connectable to the AE-C400 that centrally controls up to 24 units or 24 systems connected via M-NET.

By using EW-C50, the maximum number of connectable units can be further increased.

The use of AE-C400 enables various operation settings and integrated control of the e-series and CITY MULTI.

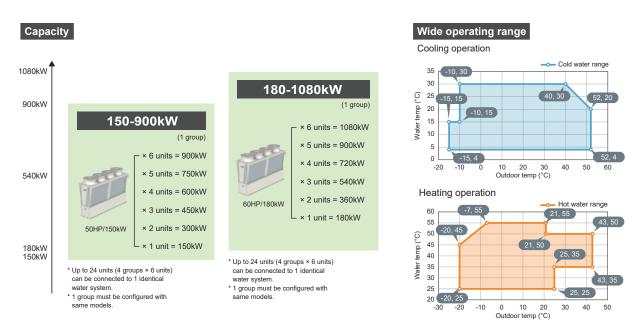
AE-C400

Major functions

Operation/ setting	ON/OFF Cooling/Heating/Heating ECO/Anti-freeze Snow/Normal Scheduled operation (daily/weekly/annual) Target temperature	Display
	Local control disabled (ON/OFF, operation mode, target temperature)	Control function

Display	WEB browser connected Operation mode Current water temperature Error code Outdoor temperature
Control function (function of chiller)	Control of multiple units Control to prevent simultaneous defrosting

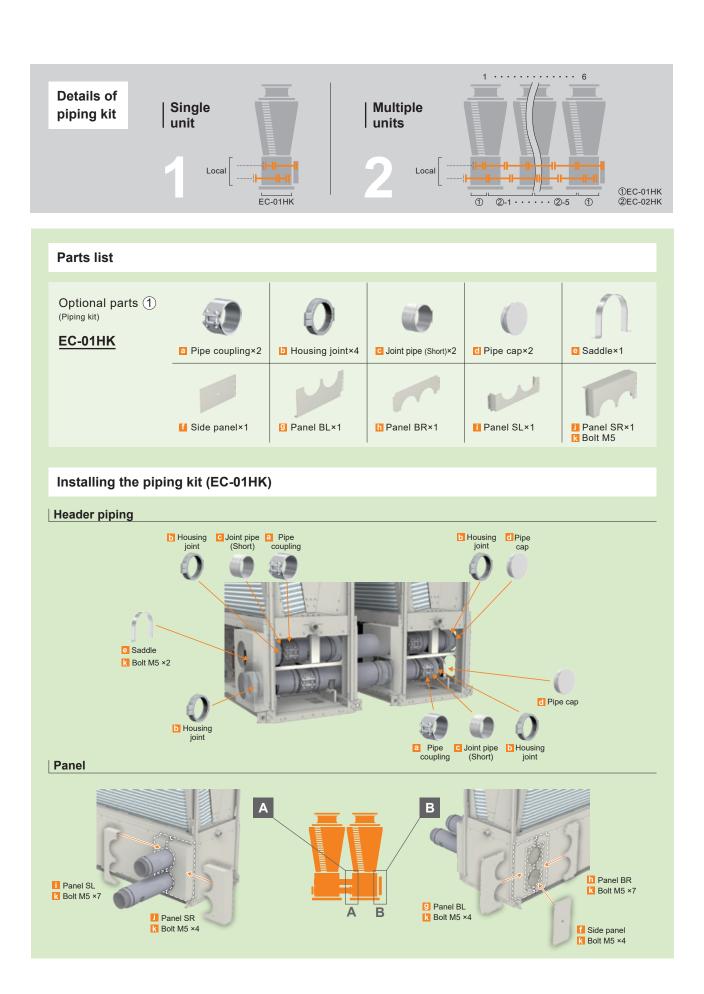
BACnet[®] connection function

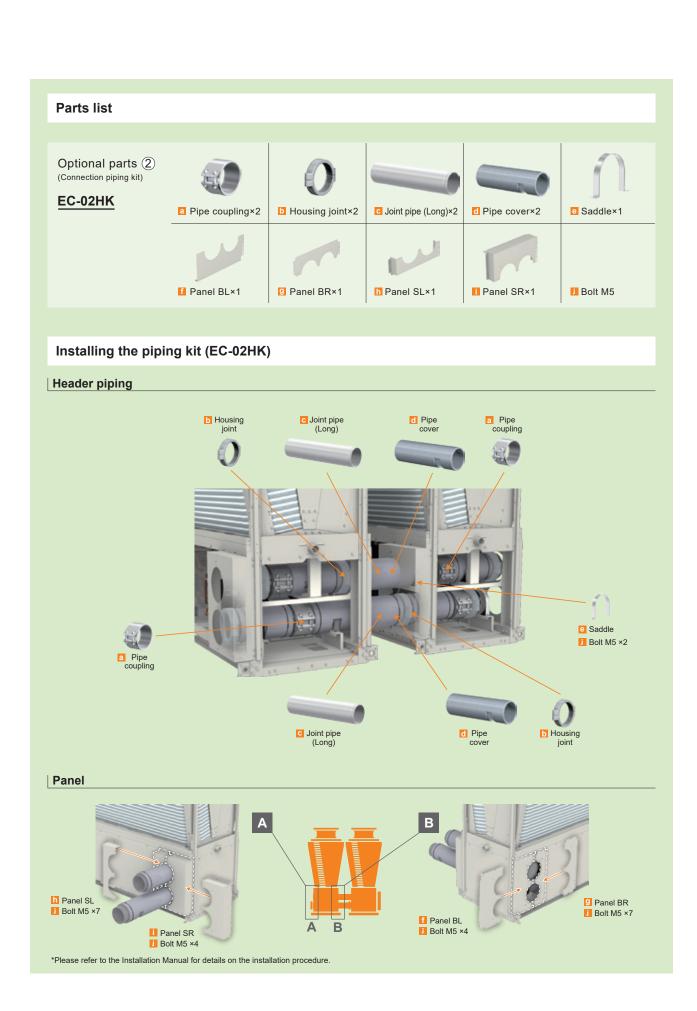

Connectable to a central monitoring device via AE-C400 using BACnet®

* BACnet® is a registered trademark of ASHRAE in the United States of America.

	ON/OFF
	Snow/Normal
Setting	Target temperature
	Cooling/Heating/Heating ECO/Anti-freeze
	Local control disabled (ON/OFF, operation mode, target temperature)
	ON/OFF
	Snow/Normal
	Inlet/outlet water temperature
Display	Cooling/Heating/Heating ECO/Anti-freeze
Display	Local control disabled (ON/OFF, operation mode, target temperature)
	Collective error
	Communication error
	Individual unit error

	Cooling only	Heat pump
50HP (150kW)	EACV-M1500YCL(-N)(-BS)	EAHV-M1500YCL(-N)(-BS)
60HP (180kW)	EACV-M1800YCL(-N)(-BS)	EAHV-M1800YCL(-N)(-BS)


* (-N) indicates built-in header type models. * (-BS) indicates anti-corrosion type models.



Optional parts

Description	Image	Model name	Remarks
Piping kit	() () ()	EC-01HK *1	For inside header type modules
Connection piping kit	Ø O A	EC-02HK *1	For inside header type modules
Fin guard		EC-130FG	For standard pipe type and inside header type modules *2
Representative-water temperature sensor		TW-TH16-E	For standard pipe type and inside header type modules

*1 EC-01HK and EC-02HK contain panels and bolts together with the items shown. (Please refer to the next page for details.)

Specifications

Standard				
Anti-corrosion				
Built-in header				
Anti-corrosion Built-in header				

 60HP
 EACV-M1800YCL

 60HP
 EACV-M1800YCL-BS
 60HP EACV-M1800YCL-N 50HP EACV-M1500YCL-N-BS 60HP EACV-M1800YCL-N-BS

Model			EACV-M1500YCL(-N)(-BS)	EACV-M1800YCL(-N)(-BS)	
Power source			3-phase 4-wire 380-		
Cooling capacity *1		kW	150.00	180.00	
cooling capacity 1		kcal/h	129.000	154,800	
		BTU/h	511,800	614,160	
	Power input	kW	44.73	57.02	
		KVV			
	EER		3.35	3.16	
	IPLV *4	3.0	6.42	6.31	
	Water flow rate	m³/h	25.8	31.0	
Cooling capacity (EN145	511) *2	kW	149.18	178.80	
		kcal/h	128,295	153,768	
		BTU/h	509,002	610,066	
	Power input	kW	45.55	58.22	
	EER		3.28	3.07	
	SEER		5.52	5.36	
	ηsc	%	217.8	211.4	
	Water flow rate	m³/h	25.8	31.0	
Current input	Cooling current 380-400-415V *1	A	76 - 72 - 69	96 - 91 - 88	
	Maximum current	A	12	0	
Water pressure drop *1	Standard piping	kPa	56	79	
	Inside header piping	kPa	134	190	
Temp range		°C	Outlet wate		
remp range	Cooling	°F	Outlet water		
	Outdoor	°C	-15~5		
		°F	5~125		
Circulating water volume		m³/h	12.9~		
	ured in anechoic room) at 1m *1	dB (A)	65	67	
	sured in anechoic room) *1	dB (A)	83	85	
Diameter of water pipe	Inlet	mm (in)	65A (2 1/2B) hor		
(Standard piping)	Outlet	mm (in)	65A (2 1/2B) hor		
Diameter of water pipe	Inlet	mm (in)	150A (6B) housing type joint		
(Inside header piping)	Outlet	mm (in)	150A (6B) hous	sing type joint	
External finish			Polyester powder of	coating steel plate	
External dimension			0050 - 044	20	
HxWxD		mm	2350 x 340	JU X 1080	
Net weight	Standard piping	kg (lbs)	1039 (2291)		
-	Inside header piping	kg (lbs)	1067 (2	2352)	
Design pressure	R32	MPa	4.1		
5 1	Water	MPa	1.0		
Heat exchanger	Water side		Stainless steel plate and copper brazing		
	Air side		Salt-resistant corrugated fin		
Compressor	Туре				
001110103001	Maker		Inverter scroll hermetic compressor MITSUBISHI ELECTRIC CORPORATION		
	Starting method				
	Quantity		Inverter4		
		100/			
	Motor output	kW		11.5 x 4 MEL46EH	
-	Lubricant	31 .			
Fan		m ³ /min	270 x 4		
	Air flow rate	L/s	4500 x 4		
		cfm	9534 x 4		
	Type, Quantity		Propeller fan x 4		
	Starting method			Inverter	
	Motor output	kW	0.92	x 4	
	External static pressure	Pa	20)	
Protection	High pressure protection		High pressure sensor & High pres	sure switch at 4.15MPa (601psi)	
	Inverter circuit			Over-heat protection, Over current protection	
	Compressor		Over-heat protection		
Refrigerant	Type x charge		R32 x 4.7 (
Jorant	Control		LE		
Control			LL	v	

*1 Under normal cooling conditions at outdoor temp 35°C DB / 24°C WB (95°F DB / 75.2°F WB) outlet water temp 7°C (44.6°F) inlet water temp 12°C (53.6°F). Pump input is not included in cooling capacity and power input.
*2 Under normal cooling conditions at outdoor temp 35°C DB / 24°C WB (95°F DB / 75.2°F WB) outlet water temp 7°C (44.6°F) inlet water temp 12°C (53.6°F). Pump input is included in cooling capacity and power input based on EN14511.
*3 Amount of factory-charged refrigerant is 2.95 (kg) ×4. Please add the refrigerant at the field.
*4 IPLV is calculated in accordance with AHRI 551-591.
*Please don't use the steel material for the water piping.
*Please advays make water circulate, or pull the circulation water out completely when not in use.
*Please advays make water circulate, or pull the direculation water out completely when not in use.
*Please diverse material to the above specifications may be subject to change without notice.
*This model is not equipped with a pump.
*5 3 3 - --- Cold water range 86 30 (J.) 77 (J.) 25 (J.) 68 20 20 -10, 30 40.30 52, 20 15, 15 e) 08 e) 20 1 59 e) 15 50 A e) 10 41 5 32 0 -20 --10, 15--15, 4 52, 4 10 20 30 Outdoor temp (°C) 50 68 86 Outdoor temp (°F) -10 0 40 50 60 -4 -14 32 104 122 140

Unit converter
kcal/h = kW x 860
BTU/h = kW x 3,412
lbs = kg/0.4536
cfm = m ³ /min x 35.31

Standard			
Anti-corrosion			
Built-in header			
Anti-corrosion Built-in header			

50HPEAHV-M1500YCL50HPEAHV-M1500YCL-BS 50HP EAHV-M1500YCL-N

 60HP
 EAHV-M1800YCL

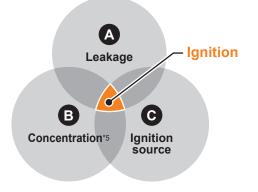
 60HP
 EAHV-M1800YCL-BS
 60HP EAHV-M1800YCL-N 50HP EAHV-M1500YCL-N-BS 60HP EAHV-M1800YCL-N-BS

Model			EAHV-M1500YCL(-N)(-BS)	EAHV-M1800YCL(-N)(-BS)	
Power source			3-phase 4-wire 380-		
Cooling capacity *1		kW	150.00	180.00	
		kcal/h	129,000	154,800	
	Derror	BTU/h	511,800	614,160	
	Power input	kW	44.73	57.02	
	EER IPLV *6		3.35	3.16	
	Water flow rate	m³/h	<u>6.42</u> 25.8	<u> </u>	
Paaling conceity (ENI445)		kW	149.18	178.80	
Cooling capacity (EN145	11) 2		149.16	153,768	
		kcal/h BTU/h	509,002	610,066	
	Power input	kW	45.55	58.22	
	EER	KVV	3.28	3.07	
	SEER		5.52	5.36	
	nsc	%	217.8	211.4	
	Water flow rate	m³/h	25.8	31.0	
leating capacity *3	Water new rate	kW	150.00	180.00	
loading oupdoiry o		kcal/h	129,000	154,800	
		BTU/h	511,800	614,160	
	Power input	kW	42.61	53.09	
	COP		3.52	3.39	
	Water flow rate	m³/h	25.8	31.0	
leating capacity (EN145		kW	150.82	181.20	
Ling suparity (E11140	···, ·	kcal/h	129,705	155,832	
		BTU/h	514,598	618,254	
	Power input	kW	43.43	54.29	
	COP		3.47	3.34	
	SCOP Low temp. application/				
	Medium temp. application		3.31 /	2.88	
	ηsh Low/Medium	%	129.0 /	112.0	
	Water flow rate	m³/h	25.8	31.0	
Current input	Cooling current 380-400-415V *1	A	76 - 72 - 69	96 - 91 - 88	
	Heating current 380-400-415V *3	A	72 - 68 - 66	90 - 85 - 82	
	Maximum current	A	12	0	
Vater pressure drop *1	Standard piping	kPa	56	79	
	Inside header piping	kPa	134	190	
emp range	Cooling	°C			
chip range	Cooling	°F	Outlet water 4~30 *7 Outlet water 39.2~86 *7		
	Heating	°C	Outlet water 25~55 *7		
	Ticating	°F	Outlet water 25~55 ^7 Outlet water 77~131 *7		
	Outdoor (Cooling)	°C	-15~52 *7		
	Culdoor (Cooling)	°F			
	Outdoor (Heating)	°C			
	outdoor (neating)	°F			
Circulating water volume	range	m³/h	12.9~		
	red in anechoic room) at 1m *1	dB (A)	65	67	
	sured in anechoic room) *1	dB (A)	83	85	
Diameter of water pipe	Inlet	mm (in)	65A (2 1/2B) ho		
Standard piping)	Outlet	mm (in)	65A (2 1/2B) hol 65A (2 1/2B) hol		
Diameter of water pipe	Inlet	mm (in)	150A (6B) hou		
Inside header piping)	Outlet	mm (in)	150A (6B) hous 150A (6B) hous		
External finish	ouuor	()	Polyester powder of		
External dimension HxW	хD	mm	2350 x 34		
let weight	Standard piping	kg (lbs)	1280 (2		
	Inside header piping	kg (lbs)	1307 (2		
Design pressure	R32	MPa	4.1		
looigii picaaule	Water	MPa	4.1		
leat exchanger	Water side	IVII CI			
iour chonanyer	Air side		Stainless steel plate and copper brazing Salt-resistant cross fin & aluminium tube		
Compressor	Type		Inverter scroll herr		
0000	Maker		MITSUBISHI ELECTF		
	Starting method				
	Quantity		Inverter 4		
	Motor output	kW	4 11.5 x 4		
	Lubricant	IXYY	MEL4		
an	Air flow rate	m³/min			
an			270 x 4		
	L/s		4500 x 4 9534 x 4		
		cfm		9534 x 4	
	Type, Quantity			Propeller fan x 4	
	Starting method	10.47	Inve		
	Motor output	kW	0.92		
	External static pressure	Pa	20		
Protection	High pressure protection		High pressure sensor & High pres		
	Inverter circuit		Over-heat protection, Over current protection		
Compressor			Over-heat protection		
	Type x charge		R32 x 11.5	(ka) x 4 *5	
Refrigerant	Control		LE		

¹Under normal cooling conditions at outdoor temp 35°C DB / 24°C WB (95°F DB / 75.2°F WB) outlet water temp 7°C (44.6°F) inlet water temp 12°C (53.6°F). Pump input is not included in cooling capacity and power input.
 ²Under normal cooling conditions at outdoor temp 35°C DB / 24°C WB (95°F DB / 75.2°F WB) outlet water temp 7°C (44.6°F) inlet water temp 12°C (53.6°F). Pump input is included in cooling capacity and power input.
 ³Under normal heating conditions at outdoor temp 7°C DB / 6°C WB (44.6°F DB / 42.5°F WB) outlet water temp 45°C (113°F) inlet water temp 40°C (104°F). Pump input is not included in heating capacity and power input.
 ⁴Under normal heating conditions at outdoor temp 7°C DB / 6°C WB (44.6°F DB / 42.8°F WB) outlet water temp 45°C (113°F) inlet water temp 40°C (104°F). Pump input is not included in heating capacity and power input.
 ⁴Under normal heating conditions at outdoor temp 7°C DB / 62.0°F CB / 42.8°F WB) outlet water temp 45°C (113°F) inlet water temp 40°C (104°F). Pump input is included in heating capacity and power input based on EN14511.
 ⁵Amount of factory-charged refirerant is 2.5° (kg) × 4. Please add the refrigerant at the field.
 ⁶Please always make water circulate, or pull the circulation water out completely when not in use.
 ⁷Please always make water circulate, or pull the circulation water out completely when not in use.
 ⁷Please always make water circulate, or pull the circulation water out completely when not in use.
 ⁷Please always make water circulate, or pull the circulation water out completely when not in use.
 ⁷Please always make water circulate, or pull the circulation water out completely when not in use.
 ⁷Please always make water circulate, or pull the circulation water out completely when not in use.
 ⁷Please always make water circulate, or pull the circulation water out completely

19

*7	$\begin{array}{ll} \mbox{kcal/h} = \mbox{kW} \ x \ 860 & \mbox{BTU/h} = \mbox{kW} \ x \ 3,412 \\ \mbox{lbs} = \mbox{kg/0.4536} & \mbox{cfm} = \mbox{m}^3/\mbox{min} \ x \ 35.31 \end{array}$
-O- Hot water range	95 35
131 55 43, 50 £ 122 § 50 21, 50 0	⁸⁶ 30 € 77 € 25 -10, 30 -40, 30
the second secon	(1) 77 (2) 25 10 68 (2) 20 15, 15 15, 15 15, 15 15, 15 15 15, 15 15 15 15 15 15 15 15 15 15
86 30 -20 25 43,33	³ ₅₀ ³ ₂ 10 −10, 15 52.4
77 25 0-20, 23 025, 25	41 5 52,4
68 20 -30 -20 -10 0 10 20 30 40 50 Outdoor temp (°C)	32 0 -10 0 10 20 30 40 50 6 Outdoortemp (*C)
-22 -4 14 32 50 68 86 104 122 Outdoor temp (*F)	-4 -14 32 50 68 86 104 122 1 Outdoor temp (*F)


Unit converter

Refrigerant		EACV-M1500YCL(-N)(-BS)/ EACV-M1800YCL(-N)(-BS)	EAHV-M1500YCL(-N)(-BS)/ EAHV-M1800YCL(-N)(-BS)	
Type/GWP		R32/675		
Factory charged	Weight	kg	2.95 (kg) x 4	
	CO2 equivalent	t	8.0	
Maximum additional charge	Weight	kg	1.75 (kg) x 4	8.55 (kg) x 4
	CO2 equivalent	t	4.7	23.1
Total charge	Weight	kg	4.7 (kg) x 4	11.5 (kg) x 4
	CO ₂ equivalent	t	12.7	31.1

Fluorinated greenhouse gases information

R32 refrigerant properties

Under the conditions shown below, there is a possibility that R32 could burn.

	R32	R410A	R22
Chemical formula	CH ₂ F ₂	CH ₂ F ₂ /CHF ₂ CF ₃	CHCIF ₂
Composition (blend ratio wt. %)	Single composition	R32/R125 (50/50 wt %)	Single composition
Ozone depletion potential (ODP)	0	0	0.055
Global warming potential (GWP) *1	675	2088	1810
LFL(vol.%) *2	13.3	-	-
UFL(vol.%) *3	29.3	-	-
Flammability *4	Lower flammability (2L)	No flame propagation (1)	No flame propagation (1)

*1 IPCC 4th assessment report *2 LFL: Lower flammable limit *3 UFL: Upper flammable limit

*4 ISO 817:2014 *5 R32 consistency is higher than LFL*2

and lower than UFL*3.

Be sure to observe the following three points to use R32 safely.

A

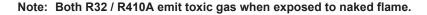
(C)

Do not leak refrigerant.

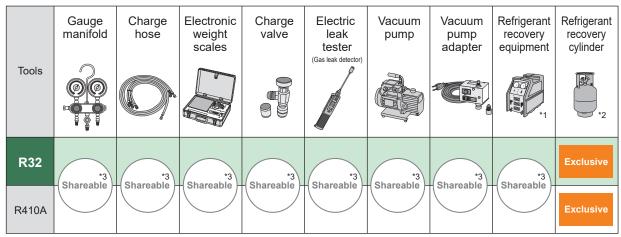
<Installation> • Vacuum drying should be done. Do not release refrigerant into the atmosphere unnecessarily. · Follow "Installation points of charging refrigerant."

<Repair/Removal> • Refrigerant should be recovered.

Prevent concentration. В


Follow "Installation restrictions".

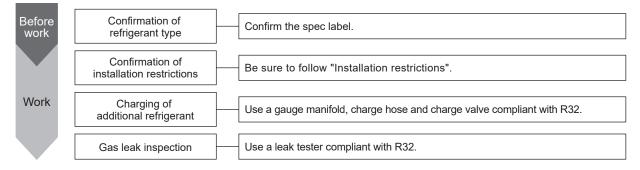
Keep ignition sources away from the unit.


• Do not braze pipes that contain refrigerant. Before brazing, refrigerant should be recovered.

Do not install the unit while electricity is on. Turn off electricity and check using a tester.

· Do not smoke during work and transportation.

Tools


Note: Be sure to confirm with the manufacturers that the electric leak tester, vacuum pump and refrigerant recovery equipment are compliant with R32.

*1 Refer to catalogs provided by the manufacturers of the tools above to ensure that the tools are usable with R32.

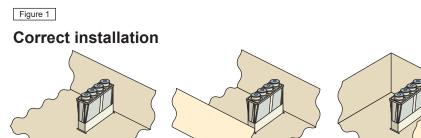
*2 Do not use R32 and R410A in combination in the same refrigerant recovery cylinder.

*3 The types of tools required for R32 units and R410A units are the same. Each tool must be used only with either R32 units or R410A units.

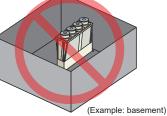
Procedure for charging refrigerant

Installation restrictions

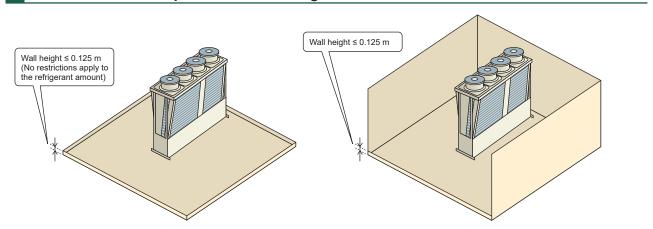
General restrictions


Do not install the unit where combustible gas may leak.

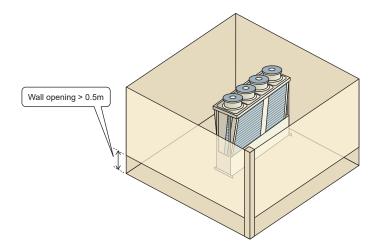
- If combustible gas accumulates around the unit, fire or explosion may result.


- Provide sufficient space around the unit for effective operation, efficient air movement, and ease of access for maintenance.
- All restrictions mentioned in this manual apply not only to new installations but also to relocations and layout changes.
- Refer to the Installation Manual for other precautions on installation.

Installation space requirement

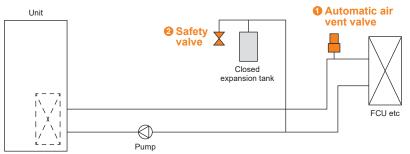

- Do not install the unit inside a building such as the basement or machine room, where the refrigerant may stagnate.
- Install the unit in a place where at least one of four sides is open.

Incorrect installation



If the unit needs to be installed in a space where all four sides are blocked, confirm that one of the following situations (A or B) is satisfied.

A Install the unit in a space with a wall height of \leq 0.125 m.


B Create an appropriate ventilation opening.

Regulatory requirements for safety

See below for information on installing a safety device on the air cooled chilling unit system.

- * Safety devices shall be regularly inspected, maintained, and replaced in accordance with relevant laws, regulations, and the instructions of the manufacturers.
- * The requirements listed below were established based on IEC60335-2-40 (Edition 5.0) G.G.6. See the original standards for further information on selecting a safety device.

Required items	Note		
1 Automatic air vent valve	* In the event of a failure of the waterside heat exchanger in the unit, the refrigerant may leak from the automatic air vent valve, so install it in a place where the refrigerant will not accumulate, such as outdoors.		
2 Safety valve	* In the event of a failure of the waterside heat exchanger in the unit, the refrigerant may leak from the safety valve, so install it in a place where the refrigerant will not accumulate, such as outdoors.		

▲Warning

Do not use refrigerant other than the type indicated in the manuals provided with the unit and on the nameplate.

- Doing so may cause the unit or pipes to burst, or result in explosion or fire during use, repair, or at the time of disposal of the unit. - It may also be in violation of applicable laws.
- MITSUBISHI ELECTRIC CORPORATION cannot be held responsible for malfunctions or accidents resulting from the use of the wrong type of refrigerant.

Our air-cooled chilling units contain a fluorinated greenhouse gas, R32 (GWP:675).

This GWP value is based on Regulation (EU) No. 517/2014 from IPCC 4th edition. In case of Regulation (EU) No. 626/2011 from IPCC 3rd edition, this is R32 (GWP:550).

MITSUBISHI ELECTRIC CORPORATION

www.MitsubishiElectric.com